KroneckerProducts

Index

Base.adjointMethod
adjoint(K::KroneckerProduct)

Compute the adjoint of a Kronecker product.

source
Base.invMethod
inv(K::BoxProduct)

Compute the inverse of a Box product.

source
Base.invMethod
inv(K::KroneckerProduct)

Compute the inverse of a Kronecker product.

source
Base.kronMethod
collect(K::KroneckerProduct)

Collects a lazy instance of the KroneckerProduct type into a full, native matrix. Equivalent with Matrix(K::KroneckerProduct).

source
Base.transposeMethod
transpose(K::KroneckerProduct)

Compute the transpose of a Kronecker product.

source
IgaBase.orderMethod
order(M::AbstractMatrix)

Returns the order of a matrix, i.e. how many matrices are involved in the Kronecker product (default to 1 for general matrices).

source
KroneckerProducts.boxFunction
box(A, B)
box(A, B...)

Compute the box product, which is defined as a perfect shuffle of a kronecker product.

source
LinearAlgebra.eigenMethod
eigen(K::KroneckerProduct)

If the matrices of a KroneckerProduct instance are square, performs the eigenvalue decompositon on them and return an Eigen type.

source
LinearAlgebra.isposdefMethod
isposdef(K::KroneckerProduct)

Test whether a Kronecker product is positive definite (and Hermitian) by trying to perform a Cholesky factorization of K.

source
LinearAlgebra.lmul!Method
lmul!(a::Number, K::KroneckerProduct)

Scale a KroneckerProduct K inplace by a factor a by rescaling the left matrix.

source
LinearAlgebra.rmul!Method
rmul!(K::KroneckerProduct, a::Number)

Scale a KroneckerProduct K inplace by a factor a by rescaling the right matrix.

source
Base.MatrixMethod
Matrix(K::KroneckerProduct)

Converts a GeneralizedKroneckerProduct instance to a Matrix type.

source
KroneckerProducts.BoxProductType
BoxProduct{M,T,N} <: AbstractKron{M,T,N}

The box product is defined in the following paper.

Olsen, Peder A., Steven J. Rennie, and Vaibhava Goel. "Efficient automatic differentiation of matrix functions." In Recent Advances in Algorithmic Differentiation, pp. 71-81. Springer, Berlin, Heidelberg, 2012.

source